Glycol Chiller Systems in Breweries

The basics that every brewer should know, and more.

PRESENTED BY PRO REFRIGERATION INC

Perspective: The less you worry about cooling, the more you can focus on making great beer.

- **1.** What is a Chiller System, how does it work?
- 2. Piping in your Brewery Chiller System
- 3. Proper Care and Feeding of your Chiller System
- 4. Calculating your Brewing Cooling Loads

Conclusion :

Your Chiller System is much more Important part of your brewery than you realized.

GLOSSARY

PUMP:

CHILLER SYSTEM: Mechanical Refrigeration System designed to cool a fluid, that is then used to cool product, place, or person.

GLYCOL: Propylene Glycol is a food safe antifreeze that we mix with water, enabling us to chill the fluid to lower temperatures.

COMPRESSOR: Instrument or device used to compress something.

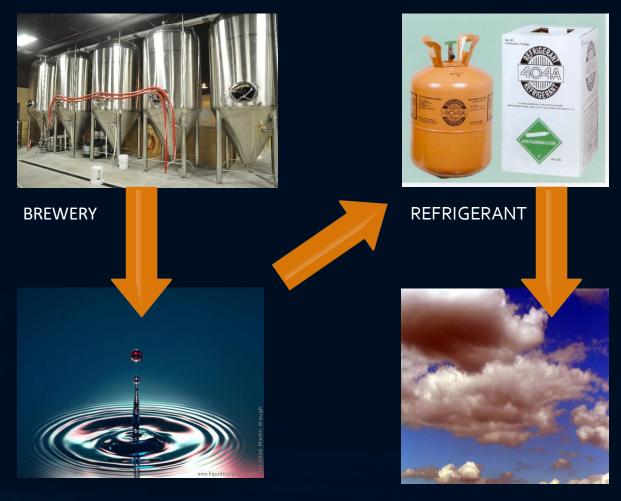
EVAPORATOR: A key component within a refrigeration system where liquid is expanded and evaporated into a vapor.

CONDENSER: Where high pressure vapor is condensed to a liquid

Device used to move or transfer fluids within the chiller system.

- REFRIGERATION SYSTEM
- INSULATED STORAGE
 TANK
- GLYCOL PUMPS
- CONTROLS

Breweries require a 25-28 F Fluid to service their loads. To accomplish this we mix a Food Safe Anti Freeze called Propylene Glycol with water.



What does the Chiller System do?

TRANSFERS HEAT

If you can't destroy it, transfer it...

Heat is a form of energy, you can't destroy it or modify it- all you can do is transfer from one place to another. Your chiller system is a mechanical system that enables this.

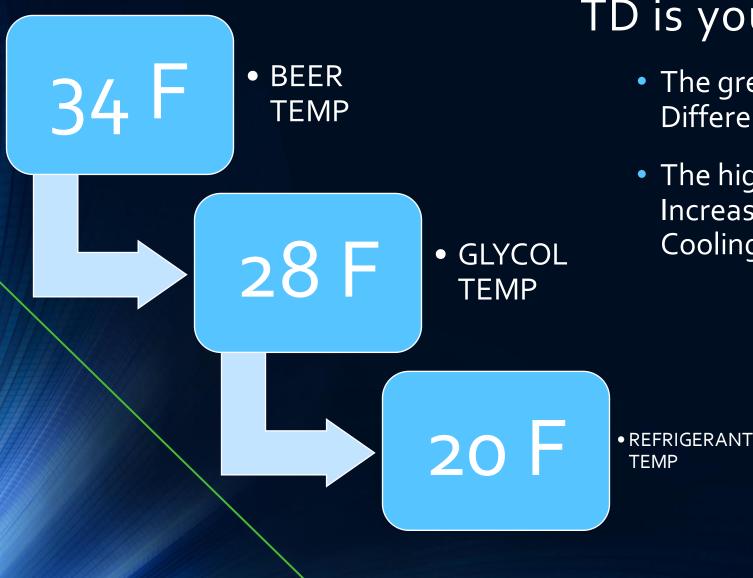
GLYCOL

ATMOSPHERE

GLYCOL COOLED VESSELS OR HEAT EXCHANGERS

- FERMENTERS keeping tanks at optimum fermenting temps
 - BRITE BEERTANKS holding them at optimum temps
 - WORT HEAT EXCHANGER second stage cooling
 - COLD LIQUOR TANK
 - YEAST BRINK
 - ROOM HX
 - PACKAGING HX
 - CENTRIFUGE HX

chilling well water to 35 F, used cool wort


storing yeast at cold temperatures

using chilled glycol to service cold room

temp control for machine

centrifuge will increase beer temp 2-10 F

HEAT TRANSFER

TD is your friend

- The greater the Temperature Difference, the faster the heat transfer
- The higher Glycol Temperature = Increased System Efficiency and Cooling Capacity

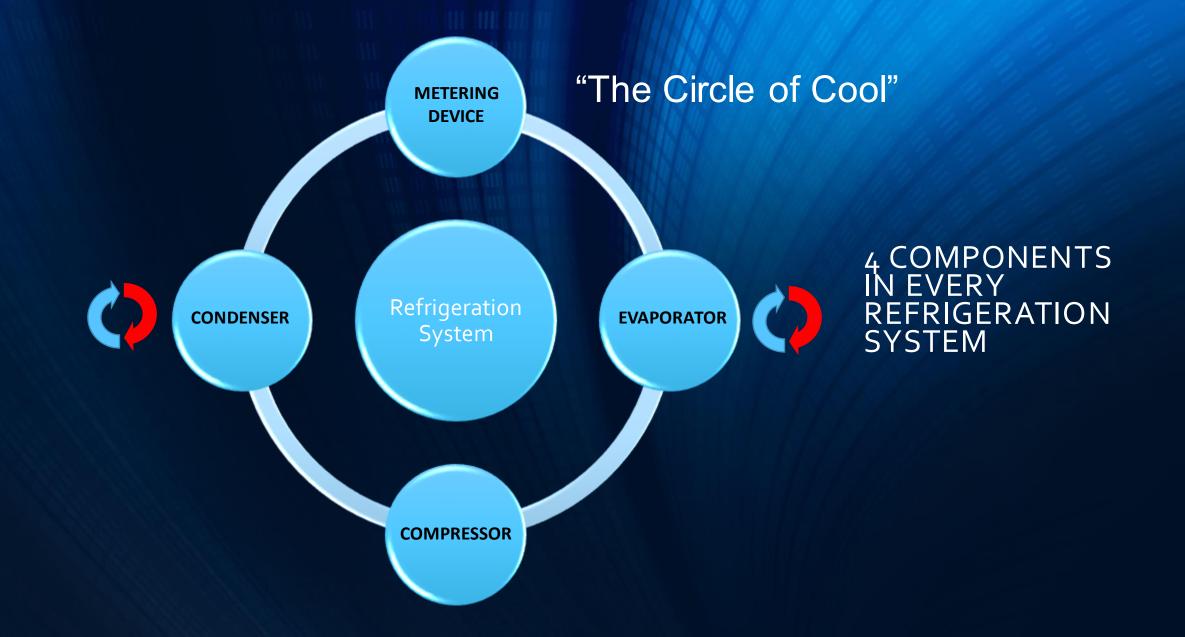
Heat Exchange Efficiency

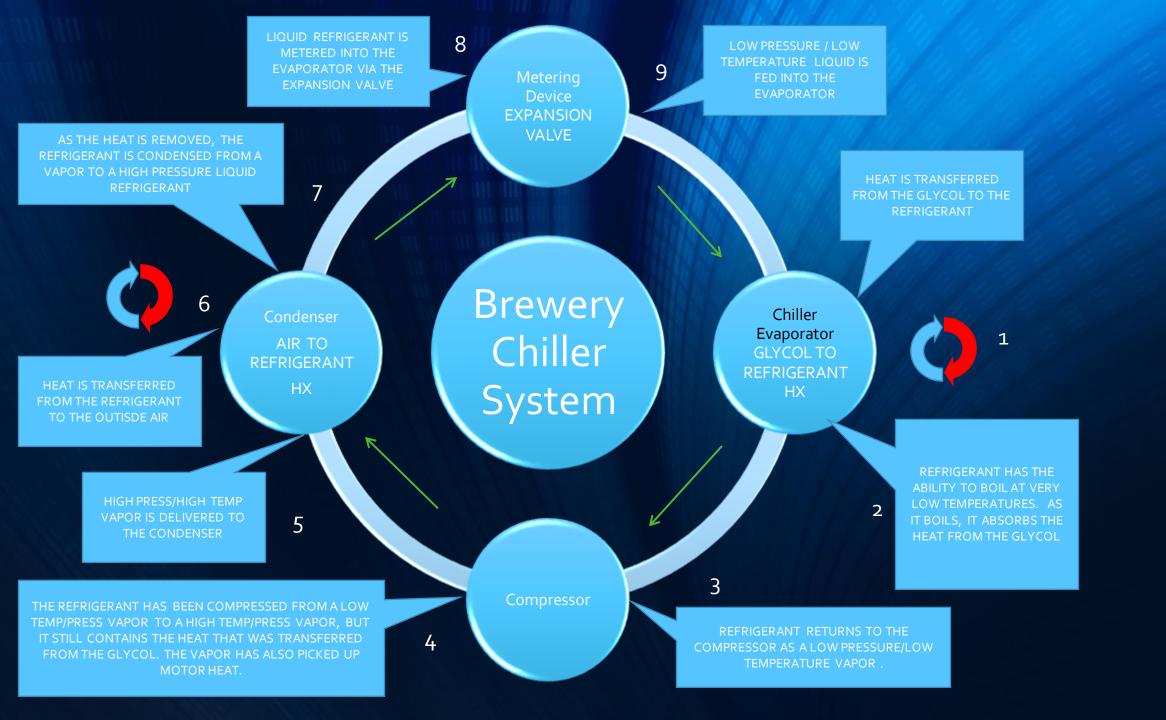
System Design Goals

Operate at highest glycol temperature possible, to achieve the required End Product Temperature.

The higher the Refrigerant Temperature, the higher your BTU Cooling Capacity of your chiller system

To rate Chiller System efficiency, we us an EER Energy Efficiency Ratio


EER = BTU-HR Cooling Capacity / Watts used


CHILLER SYSTEM- 20 HP 20 F GLYCOL/90 F Cond 147,740 BTU/HR EER 11.86 kW 12.46 30 F GLYCOL/90 F Cond 186,051 BTU/HR EER 13.81 kW 13.89 11% 21% 40 F GLYCOL/90 F Cond 20% 231,494 BTU/HR EER 16.25 Kw 14.25

YOUR CHILLER COOLING CAPACITY INCREASES

AS YOUR GLYCOL OPERATING TEMPERATURE INCREASES

MECHANICAL REFRIGERATION SYSTEM

DUAL PUMP GLYCOL SYSTEM

GLYCOL RESERVOIR

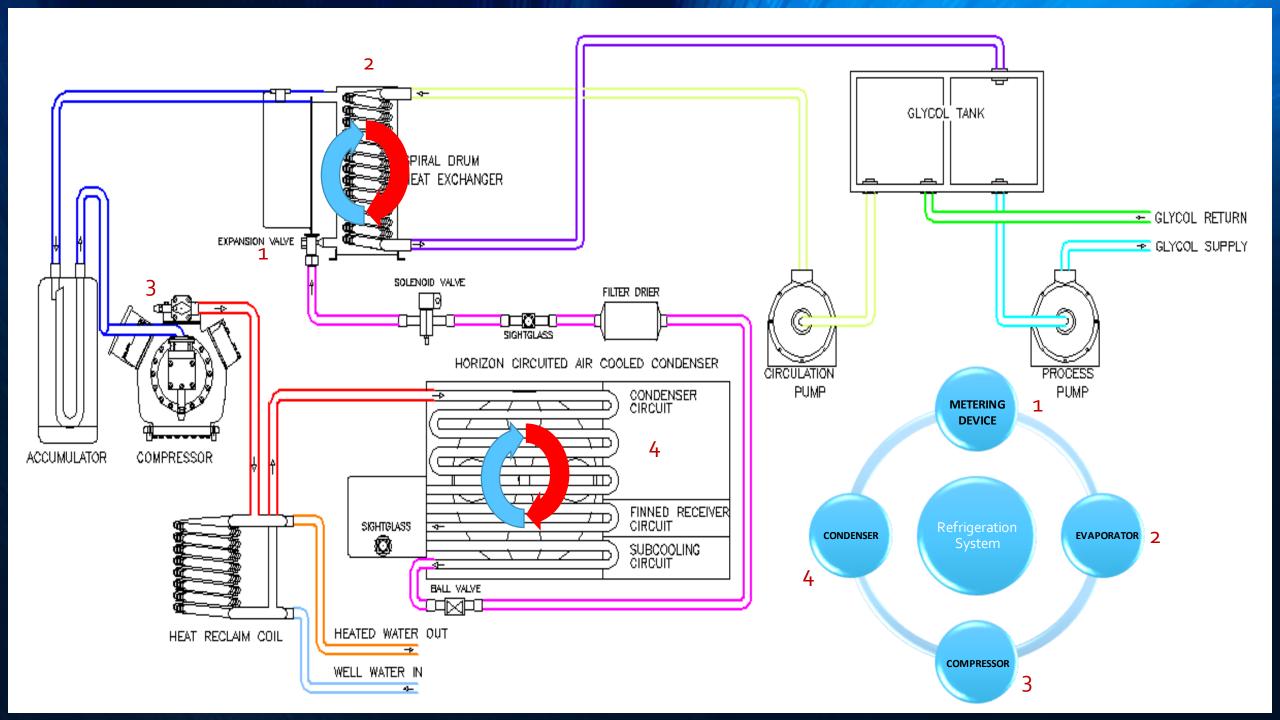
WARM GLYCOL RETURN

COLD GLYCOL RETURN

FROM EVAPORATOR

FROM BREWERY

Supply to Chiller Evaporator


CIRCULATION PUMP

Return from Process Loop

Return from Chiller Evaporator

PROCESS PUMP

Supply to Process Loop

SECTION REVIEW HEAT TRANSFER

TEMPERATURE DIFFERENCE

4 COMPONENTS

THE CHILLER SYSTEM

BREWERY GLYCOL PIPING OPTIONS

BREWERY PIPING DECICI

SPEARS® MANUFACTURING COMPANY CORPORATE OFFICE 15853 OLDEN STREET • SYLMAR, CALIFORNIA 91342 MAILING ADDRESS: P.O. BOX 9203 • SYLMAR, CALIFORNIA 91392 Telephone (818) 364-1611 • Fax (818) 364-6945 www.spearsmfg.com

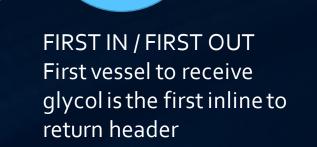
Minimum Temperature Limitations

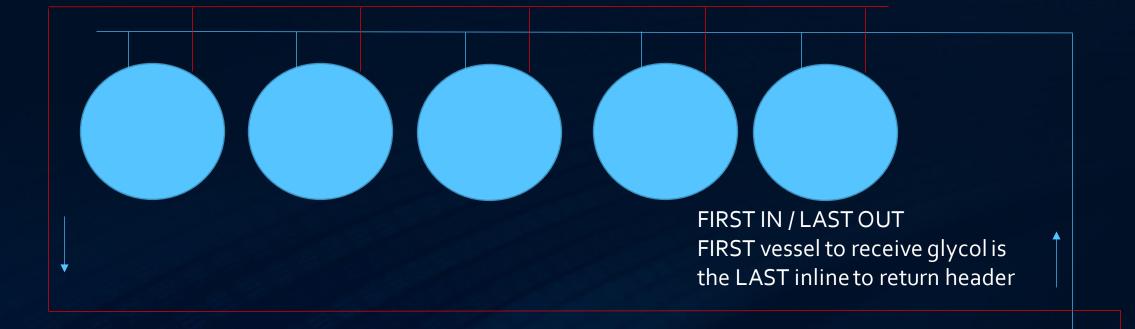
The Spears® Polyvinyl Chloride (PVC) and Chlorinated Polyvinyl Chloride (CPVC) Valves can be used at temperatures to a minimum of 40°F (4.44°C), consideration to expansion and contraction, and system operation should be given.

Gregory Peak Director, Technical Services

BREWERY PIPING DESIGN

Don't cut corners on Insulation or Pipe Supports





BREWERY PIPING DESIGN FIRST IN / FIRST OUT

BREWERY PIPING DESIGN FIRST IN / LAST OUT

FALL BREWING

SAN DIEGO, CA

SECTION REVIEW

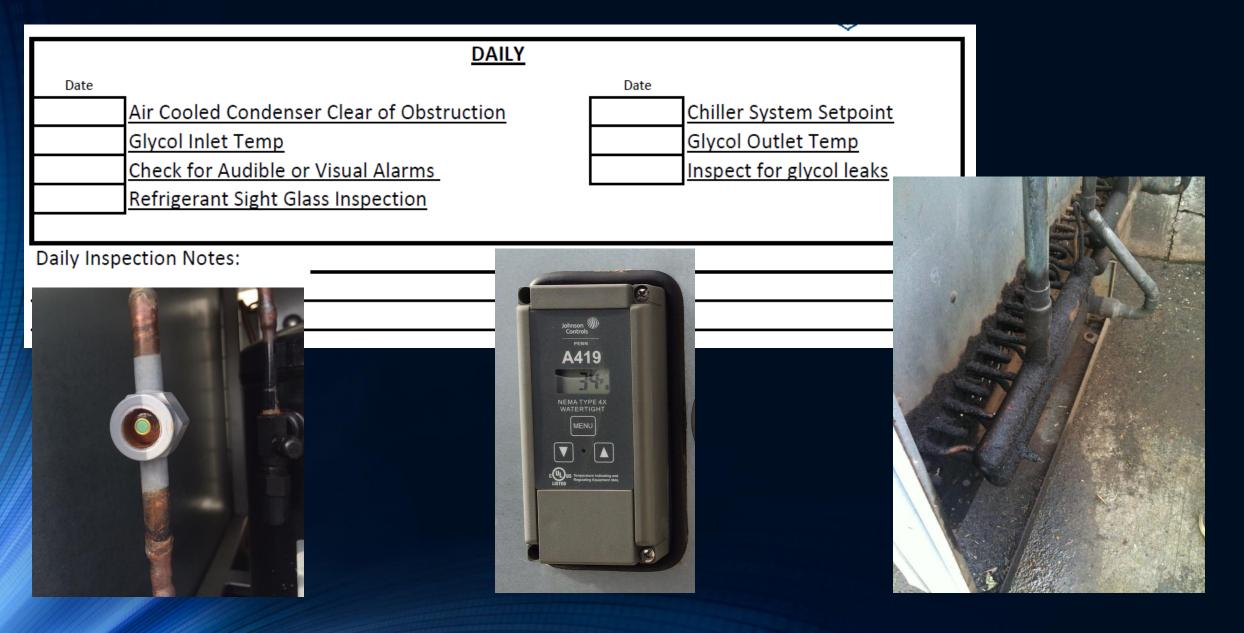
COPPER / STAINLESS STEEL/ ABS

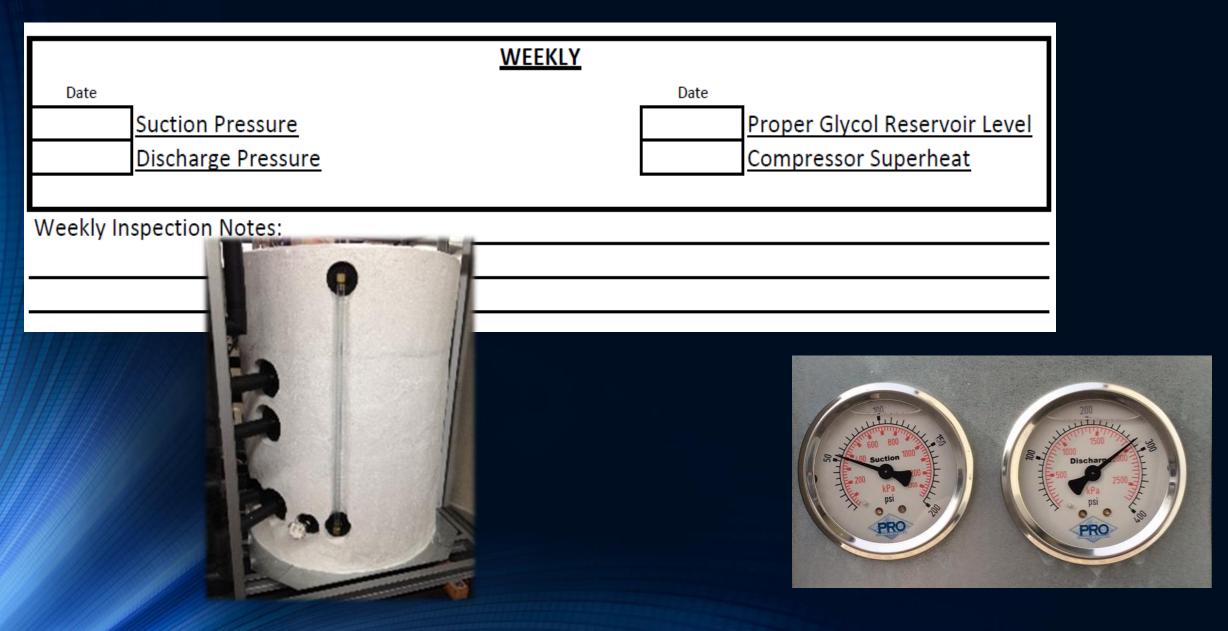
PVC – USE AT YOUR OWN RISK

HANGERS AND INSULATION ARE IMPORTANT

FIRST IN / LAST OUT PIPING

PROPER CARE AND FEEDING OF A CHILLER SYSTEM



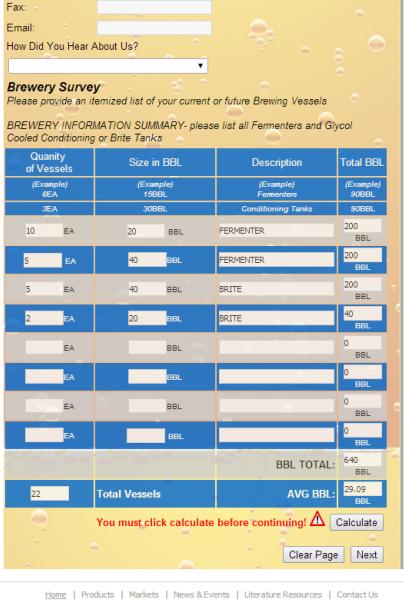

IN HOUSE VS. SERVICE CONTRACTOR DAILY / WEEKLY / MONTHLY / ANNUALLY

"How long will my chiller system last?"

	MONTHLY		
Date Glycol Freeze Concentration		Date Check Compressor Amps	
Check Pump Amperage		Check Condenser Fan Amps	5
Clean Air Cooled Condenser		Check System Amps	
Monthly Inspection Notes:			
		GREE CALL	

<u>YEARLY</u>										
Date Replace Condenser Fan Contactor Replace Pump Contactor	Date Replace Liquid Line Filter Replace Comp. Contactor									
Yearly Inspection Notes:										

- 1. Purchase direct from Manufacturer
- 2. Reduce / eliminate Motor Failures
 - \$70 for Compressor Contactor VS \$3000 for new compressor


- Determining the Cooling Loads
 - Expansion Plans
 - Managing your cooling load
- Chiller Design
 - Redundancy
 - Oversizing and Undersizing
- Glycol Pumps & Flow Requirements
- Glycol Storage Tank
- Controls
- Warranty and Serviceability

CELLAR COOLING LOAD

FERMENTATION CONDITIONING BRITE LAGERING

TAKE A CELLAR CENSUS

www.prochiller.com/brewload.htm

©2005 Pro Refrigeration, Inc. Tel:(253) 735-9466 FAX:(253) 735-2631

CELLAR COOLING LOAD

DETERMINE "AVERAGE" TO "HIGH" LOAD CONDITION BASED ON YOUR ESTIMATED OPERATING LOADS

Step 1 Step 2 Step 3

Brewery Load Estimate

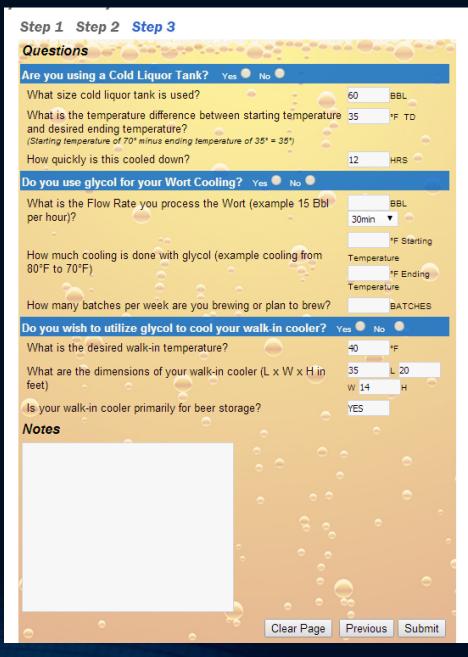
If we took a snap shot of the brewery during a "typical" or "high" load period, what would be the condition or status of each vessel listed in step 1?

We have broken these down to three categories: Active Fermentation, Knock Down Cooling, or Post Knockdown Holding / Brite Beer Holding Load.

Please fill the appropriate number of BBLs within each catagory. The total BBL's should equal the BBL Total listed in step 1. Typically customers will allocate 40% in active fermentation, 20% in knock down cooling and 40% in post knock down holding.

Step 1 Total: 640 BBLS

Category 1	Active Fermentation	0
	Total BBLS in active Fermentation: Total Quantiy (BBLS) in fermentation at any one given time. Formula based on a 72 Hour active Fermentation Time.	300 BBL
Category 2	Knock Down Cooling	\sim
0	Total BBLS in Knock Down: Total Quantity cooling from Fermentation Temp to Holding Temp at any one given time.	60 BBL
	Total Hours that Knock Down Cooling will Occur (AVG	24
<	24HRS): Length of Time (HR) that Brew will be Cooled in Knock-Down.	HR
	Desired Temperature Drop during Knockdown (AVG 30° F	30
	TD): The most aggressive temperature drop desired during Knockdown.	тр
Category 3	Post Knockdown Holding	
	Total BBLS in Post Knock Down Hold or Brite Beer Load:	280
	Total Quantiy (BBLS) in Post-Knock Down at any one given time.	BBL
	Total:	
	(Should Step 1 Total)	BBL
	\sim You must click calculate before continuing! Δ C	alculate
	•	
	Clear Page Previous	Next


Home | Products | Markets | News & Events | Literature Resources | Contact Us ©2005 Pro Refrigeration, Inc. Tel:(253) 735-9466 FAX:(253) 735-2631

REVIEW ADDITIONAL COOLING LOADS

COLD LIQUOR TANK

WORTCOOLING

COLD ROOM COOLING

CALCULATING THE CELLAR LOADS

BREWERY LOAD CONDITIONS*					ACTIVE	E FERN	/ENT/	ATION		
11	Total BBLS in	active Fermentation:	300	BBL	() 0	BBL	FERMEN	NTER	
	Total Quantiy (BB	SLS) in fermentation at any one given time.			(0 0	BBL	FERMEN	NTER	
		DON'T ENTER DATA IN BOXES AB	OVE AND BELOW		(0 0	BBL	FERMEN	NTER	
		ENTER DATA IN GREEN HIGHL	IGHTED BOXES \rightarrow		(0 0	BBL	FERMEN	NTER	
					KNOCH	DOW	N			
12	Total BBLS in	n Knock Down:	60	BBL	(0 0	BBL	FERMEN	NTER	
	Total Quantity coo	oling from Fermentation Temp to Holding Temp at any one given time.			(0 0	BBL	FERMEN	NTER	
13	Total Hours th	nat Knock Down Cooling will Occur	24	HR	(0 0	BBL	FERMEN	NTER	
	Length of Time (H	IR.) that Brew will be Cooled in Knock-Down			(0 0	BBL	FERMEN	NTER	
					POST	KNOCK	C DOV	/N/BRIT	E	
14	14 Total BBLS in Post Knock Down Hold or Brite Beer Load:			BBL	(0 0	BBL			
	Total Quantiy (BB	SLS) in Post-Knock Down at any one given time.			(0 0	BBL			
					(0 0	BBL			
15	Total BBLS of	f Cold Liquor:	0	BBL						
	Total Quantity (BB	BLS) of Cold Liquor								
16	Total Hours th	nat Cold Liquor Cooling Will Occur.	1	HRS						
	Length of time (HI	R.) that Cold Liquor will be cooled.								
17	Total Cold Lic	aiuor Tank temperature drop	0	F						
	Starting Water Te	mp minus the final Cold Liquor Temp. Example starting @ 71 F, cooling to 35	F = 36 F TD							
18	Walk-In Cool	er Load (BTU/HR)	0	BTU/HR	←CAL0	CULAT	E ON	WALKIN	, WORT	COOLING,
	Cooling Load from	n Coil in Walk In Cooler in BTU/HR								
19	Wort Cooling	Load (BTU/HR)	0	BTU/HR	←CAL(CULAT	E ON	WALKIN	, WORT	COOLING,
	Two Stage Plate Cooler- Chiller Water Section Load(Estimated)									
20	20 Prepackaging line Heat Exchanger			BTU/HR	←CAL0	CULAT	E ON	WALKIN	, WORT	COOLING,
	Plate Heat Exchanger to chiller beer prior to bottling/canning (Estimated)									
		ESTIMATED BTU LOAD (BTU/HR):	75,937							

CALCULATING THE COLD LIQUOR TANK

COLD LIQ	UOR LOAD						
Cold Liquor Tank Size		60	BBLS	starting temp		70	
batch size							
60	BBLS	every	720	MINUTES			
STARTING TEMP		70	F				
ENDING TEMP		35	F	FLOW	2.583333	GPM	
TEMP DROP		35	F				
LOAD		45,208	BTU/HR				

CALCULATING THE COLD ROOM LOAD

	LOAD - MULTIPLIE	R				ENVELOPE		
35	<u>METHOD</u>	<u>LIGHT</u>		12	_x	AREA	35,280	_
20	-	MED		14	x	ENVELOPE AREA	41,160	TYPICAL
14		HEAVY		16	_x	ENVELOPE AREA	47,040	
40		<u>HEAVY</u>		20	_x	ENVELOPE AREA	58,800	_
			WINE STORAGE	10	X	ENVELOPE AREA	29,400	
		PREP AREA LXWX70					49,000	

CELLAR COOLING LOAD

75,937 BTU/HR

COLD LIQUOR TANK LOAD

45,208 BTU/HR

COLD ROOM LOAD 41,160 BTU/HR

ESTIMATED COOLING LOAD

162,305 BTU/HR

SECTION REVIEW

"How long will my chiller system last?"

Why is the CHILLER SYSTEM such an important piece of equipment in your Brewery?

- You only have one, and it ties into all aspects of the brewing process.
- Chiller System never sleeps or rests, so that you can.
- You can't have consistent product without adequate cooling.
- There are various ways to save costs when putting together your brewery- don't compromise on cooling capacity or on chiller system quality.

RESOURCES:

WWW.PROCHILLER.COM

WWW.MYCHILLER.COM

WWW.PROBREWER.COM

www.brewersassociation.org

www.mbaa.com